complex.rdoc

Path: rdoc/complex.rdoc
Last Update: Sun Nov 14 14:53:48 -0800 2010

Complex Numbers

Contents:

  1. Class methods
  2. Properties of Complex Numbers
  3. Complex Arithmetic Operators
  4. Elementary Complex Functions
  5. Complex Trigonometric Functions
  6. Inverse Complex Trigonometric Functions
  7. Complex Hyperbolic Functions
  8. Inverse Complex Hyperbolic Functions

Class Methods


  • GSL::Complex.alloc(re, im)
  • GSL::Complex.rect(re, im)
  • GSL::Complex[re, im]

    These create a GSL::Complex object with real and imaginary part re, im.


  • GSL::Complex.polar(r, theta)

    This returns a GSL::Complex object in polar representation, with the amplitude r and the phase (argument) theta.

Properties of complex numbers


  • GSL::Complex#real
  • GSL::Complex#re
  • GSL::Complex#REAL

    Returns the real part


  • GSL::Complex#imag
  • GSL::Complex#im
  • GSL::Complex#IMAG

    Returns the imaginary part


  • GSL::Complex#arg
  • GSL::Complex#angle
  • GSL::Complex#phase

    Returns the argument (i.e. phase angle in radians) of self.


  • GSL::Complex#abs, abs2, logabs

    Returns the magnitude, squared magnitude, and the logarithm of the magnitude

Complex arithmetic operators


  • GSL::Complex#add(b)
  • GSL::Complex#+(b)

    Return the sum of the complex numbers self and b.


  • GSL::Complex#sub(b)
  • GSL::Complex#-(b)

    Return the difference of the complex numbers self and b.


  • GSL::Complex#mul(b)
  • GSL::Complex#*(b)

    Returns the product of the complex numbers self and b.


  • GSL::Complex#div(b)
  • GSL::Complex#/(b)

    Returns the quotient of the complex numbers self and b.


  • GSL::Complex#add_real
  • GSL::Complex#sub_real
  • GSL::Complex#mul_real
  • GSL::Complex#div_real
  • GSL::Complex#add_imag
  • GSL::Complex#sub_imag
  • GSL::Complex#mul_imag
  • GSL::Complex#div_imag

  • GSL::Complex#conjugate
  • GSL::Complex#conj

    Returns the complex conjugate of the complex number self.


  • GSL::Complex#inverse

    Returns the inverse of the complex number self.


  • GSL::Complex#negative

    Returns the negative of the complex number self.

Elementary Complex Functions


  • GSL::Complex#sqrt
  • GSL::Complex#pow(az)
  • GSL::Complex#pow_real(a)
  • GSL::Complex#exp
  • GSL::Complex#log
  • GSL::Complex#log10
  • GSL::Complex#log_b(b)

  • GSL::Complex.sqrt(z)
  • GSL::Complex.sqrt_real(a)
  • GSL::Complex.pow(z, za)
  • GSL::Complex.pow_real(z, a)
  • GSL::Complex.exp(z)
  • GSL::Complex.log(z)
  • GSL::Complex.log10(z)
  • GSL::Complex.log_b(z, b)

Complex Trigonometric Functions


  • GSL::Complex#sin
  • GSL::Complex#cos
  • GSL::Complex#tan
  • GSL::Complex#sec
  • GSL::Complex#csc
  • GSL::Complex#cot

  • GSL::Complex.sin(z)
  • GSL::Complex.cos(z)
  • GSL::Complex.tan(z)
  • GSL::Complex.sec(z)
  • GSL::Complex.csc(z)
  • GSL::Complex.cot(z)

Inverse Complex Trigonometric Functions


  • GSL::Complex#arcsin
  • GSL::Complex#arccos
  • GSL::Complex#arctan
  • GSL::Complex#arcsec
  • GSL::Complex#arccsc
  • GSL::Complex#arccot

  • GSL::Complex.arcsin(z)
  • GSL::Complex.arcsin_real(a)
  • GSL::Complex.arccos(z)
  • GSL::Complex.arccos_real(a)
  • GSL::Complex.arctan(z)
  • GSL::Complex.arcsec(z)
  • GSL::Complex.arcsec_real(a)
  • GSL::Complex.arccsc(z)
  • GSL::Complex.arccsc_real(z)
  • GSL::Complex.arccot(z)

Complex Hyperbolic Functions


  • GSL::Complex#sinh
  • GSL::Complex#cosh
  • GSL::Complex#tanh
  • GSL::Complex#sech
  • GSL::Complex#csch
  • GSL::Complex#coth

  • GSL::Complex.sinh(z)
  • GSL::Complex.cosh(z)
  • GSL::Complex.tanh(z)
  • GSL::Complex.sech(z)
  • GSL::Complex.csch(z)
  • GSL::Complex.coth(z)

Inverse Complex Hyperbolic Functions


  • GSL::Complex#arcsinh
  • GSL::Complex#arccosh
  • GSL::Complex#arctanh
  • GSL::Complex#arcsech
  • GSL::Complex#arccsch
  • GSL::Complex#arccoth

  • GSL::Complex#arcsinh(z)
  • GSL::Complex#arccosh(z)
  • GSL::Complex#arccosh_real(a)
  • GSL::Complex#arctanh(z)
  • GSL::Complex#arctanh_real(z)
  • GSL::Complex#arcsech(z)
  • GSL::Complex#arccsch(z)
  • GSL::Complex#arccoth(z)

prev next

Reference index top

[Validate]